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L ast time: CLIP
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Figure 1. Summary of our approach

some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the

target dataset’s classes.
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(2) Create dataset classifier from label text
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. While standard image models jointly train an image feature extractor and a linear classifier to predict



Yes, this paper was harder to read

Dall-E 2 algorithm integrates a
collection of complex algorithms,
motivated by sophisticated statistics.

Toaday we will try to partially unpack
this!



Diffusion Models

* (but secretly, lots of discussion of probability models)

A denoising diffusion model generates an image. Figure from the paper: https://arxiv.org/abs/2006.11239
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Can do this at different resolutions
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Also applies to non-Images

The forward trajectory
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Selected generated images 1 screenshot 16X256 cascaded class-conditional ImageNet model.



The two-stage diffusion model unCLIP (Ramesh et al. 2022) heavily utilizes the CLIP text encoder

to produce text-guided images at high quality. Given a pretrained CLIP model ¢ and paired training
data for the diffusion model, (x, y), where x is an image and ¥y Is the corresponding caption, we
can compute the CLIP text and image embedding, c¢*(y) and ¢’(x), respectively. The unCLIP learns
two models In parallel:

e A prior model P(c’|y): outputs CLIP image embedding ¢’ given the text v.

o Adecoder P(x|c’, [y]): generates the image x given CLIP image embedding c* and optionally
the original text .

These two models enable conditional generation, because

P(x|y) = P(x,c'ly) = P(x|c’,y)P(c’|y)

¢’ is deterministic given x



unCLIP follows a two-stage image generation process:

1. Given a text y, a CLIP model is first used to generate a text embedding ct(y). Using CLIP latent
space enables zero-shot image manipulation via text.

2. A diffusion or autoregressive prior P(ci |y) processes this CLIP text embedding to construct an
image prior and then a diffusion decoder P(x|c?, [y]) generates an image, conditioned on the

prior. This decoder can also generate image variations conditioned on an image input,
preserving its style and semantics.

Text from really good webpage: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding 1s used to condition a diffusion decoder which
produces a final image. Note that the CLIP model 1s frozen during training of the prior and decoder.

A high-level overview of the system. Some details like decoder text conditioning are not shown. From the
original paper.



investigations on the importance
of the prior: condition the same
decoder using different signals:

1) text caption and zero CLIP
embedding,

2) text caption and CLIP text
embedding as if it were an image
embedding,

3) text and CLIP image embedding
generated by the prior.

Text embedding

Image embedding

Conditioning the decoder on just

. . “A group of baseball “an oil painting of a o it : “A motorcycle parked in a “This wire metal rack
players is crowded at corgi wearing a % parking space next to holds several pairs of
e caption is clearly worst, bu " calculator”
’ the mound.” party hat” another motorcycle.” shoes and sandals™
conditionin g on text embeddin g5 Figure 8: Samples using different conditioning signals for the same decoder. In the first row, we pass the text

caption to the decoder, and pass a zero vector for the CLIP embedding. In the second row, we pass both the
ZEIO-S h ot d oes p rOd uce reasonad b | € text caption and the CLIP text embedding of the caption. In the third row, we pass the text and a CLIP image
embedding generated by an autoregressive prior for the given caption. Note that this decoder is only trained
resu ItS o to do the text-to-image generation task (without the CLIP image representation) 5% of the time.

Another really nice post with explanations:
https://moocaholic.medium.com/openai-and-the-road-to-text-guided-image-generation-dall-e-clip-glide-dall-e-2-unclip-c6e28f7194ea
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Visualization of reconstructions of CLIP latents from progressively more PCA dimensions (20, 30, 40, 80, 120,
160, 200, 320 dimensions), with the original source image on the far right. The lower dimensions preserve
coarse-grained semantic information, whereas the higher dimensions encode finer-grained details about the
exact form of the objects in the scene.



Figure 4: Variations between two images by interpolating their CLIP image embedding and then decoding
with a diffusion model. We fix the decoder seed across each row. The intermediate variations naturally blend
the content and style from both input = screenshot



Figure 15: Reconstructions from the decoder for difficult binding problems. We find that the reconstructions
mix up objects and attributes. In the first two examples, the model mixes up the color of two objects. In the
rightmost example, the model does not rel*~k!+ »2eqngtruct the relative size of two objects.

Screenshot



https://strikingloo.github.io/DALL-E-2-prompt-guide












Will CLIP
Zero-Shot”?

Robert Pless

w/ Kevin Robbins, Yu Wu,
Xiaotong Liu, Alper Cetinkaya

Here's the title slide for your presentation titled "Will CLIP
Zero Shot," designed with a creative twist inspired by the
"Will it Blend" YouTube channel theme. Let me know if you

need any modifications! Geo rge Washington
University



(Contrastive Language Image Pre-Training), is a Foundation
model that has completely change the ability to create computer
vision tools.

Trained on 5B pairs of (image, caption), CLIP has learned to embed
iImages and related text to nearby locations (in a high-dimensional
vector space).
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This is surprisingly powerful. It is the basis of tools like Dall-E
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. But you might still want to know how
well it works for your problem domain...

If you have a problem for which you need
image classification, you no longer need to
talk to Computer Vision faculty. Any
undergrad can make you a classifier for
exactly the classes you care about.
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“black knight” could relate to a person,
a chess piece or Batman)
4. 7?7?77 --- sometimes Deep Learning has
confusing error modes.

If you have labelled data in your domain, <0 -0 -20 -0 0 10 20 30 40
you can just test how well CLIP works. A Score (%)

But if you don’t have labelled data, then the undergraduate student has to be
very good to find the right data to test on, and that might take a while



Question: Without any data from the problem domain, how
well can you quickly and automatically predict the accuracy of
CLIP based image classification?

But if you don’t have labelled data, then the undergraduate student has to be
very good to find the right data to test on, and that might take a while



ldea: Explore internal
consistency of CLIP space
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Question: Without any data from the problem domain, how
well can you quickly and automatically predict the accuracy of
CLIP based image classification?
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CUB-200, classification
accuracy for each of
then 200 classes, as

predicted by real
images, and by
generated images

CUB-200
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Generative model seems to be
generating “pretty, arbitrary flowers”
rather than examples of the named
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Summary

We can partially predict the accuracy with which CLIP will
recognize visual categories.

Some of the measured error in real datasets comes from
challenges in defining the classes — future work will explore
iImproving prediction accuracy by better defining those classes.
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